0 JBC
↳1 JBCToGraph (⇒, 870 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 70 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 240 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 IDP
↳12 IDPNonInfProof (⇒, 90 ms)
↳13 IDP
↳14 IDependencyGraphProof (⇔, 0 ms)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔, 0 ms)
↳18 IDP
↳19 IDPNonInfProof (⇒, 110 ms)
↳20 AND
↳21 IDP
↳22 IDependencyGraphProof (⇔, 0 ms)
↳23 TRUE
↳24 IDP
↳25 IDependencyGraphProof (⇔, 0 ms)
↳26 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB17 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x > z) {
while (y > z) {
y--;
}
x--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 16 rules for P and 0 rules for R.
P rules:
1299_0_main_Load(EOS(STATIC_1299), i576, i577, i87, i576) → 1300_0_main_LE(EOS(STATIC_1300), i576, i577, i87, i576, i87)
1300_0_main_LE(EOS(STATIC_1300), i576, i577, i87, i576, i87) → 1303_0_main_LE(EOS(STATIC_1303), i576, i577, i87, i576, i87)
1303_0_main_LE(EOS(STATIC_1303), i576, i577, i87, i576, i87) → 1305_0_main_Load(EOS(STATIC_1305), i576, i577, i87) | >(i576, i87)
1305_0_main_Load(EOS(STATIC_1305), i576, i577, i87) → 1308_0_main_Load(EOS(STATIC_1308), i576, i577, i87, i577)
1308_0_main_Load(EOS(STATIC_1308), i576, i577, i87, i577) → 1310_0_main_LE(EOS(STATIC_1310), i576, i577, i87, i577, i87)
1310_0_main_LE(EOS(STATIC_1310), i576, i577, i87, i577, i87) → 1311_0_main_LE(EOS(STATIC_1311), i576, i577, i87, i577, i87)
1310_0_main_LE(EOS(STATIC_1310), i576, i577, i87, i577, i87) → 1312_0_main_LE(EOS(STATIC_1312), i576, i577, i87, i577, i87)
1311_0_main_LE(EOS(STATIC_1311), i576, i577, i87, i577, i87) → 1313_0_main_Inc(EOS(STATIC_1313), i576, i577, i87) | <=(i577, i87)
1313_0_main_Inc(EOS(STATIC_1313), i576, i577, i87) → 1316_0_main_JMP(EOS(STATIC_1316), +(i576, -1), i577, i87)
1316_0_main_JMP(EOS(STATIC_1316), i581, i577, i87) → 1320_0_main_Load(EOS(STATIC_1320), i581, i577, i87)
1320_0_main_Load(EOS(STATIC_1320), i581, i577, i87) → 1297_0_main_Load(EOS(STATIC_1297), i581, i577, i87)
1297_0_main_Load(EOS(STATIC_1297), i576, i577, i87) → 1299_0_main_Load(EOS(STATIC_1299), i576, i577, i87, i576)
1312_0_main_LE(EOS(STATIC_1312), i576, i577, i87, i577, i87) → 1315_0_main_Inc(EOS(STATIC_1315), i576, i577, i87) | >(i577, i87)
1315_0_main_Inc(EOS(STATIC_1315), i576, i577, i87) → 1318_0_main_JMP(EOS(STATIC_1318), i576, +(i577, -1), i87)
1318_0_main_JMP(EOS(STATIC_1318), i576, i582, i87) → 1322_0_main_Load(EOS(STATIC_1322), i576, i582, i87)
1322_0_main_Load(EOS(STATIC_1322), i576, i582, i87) → 1305_0_main_Load(EOS(STATIC_1305), i576, i582, i87)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1310_0_main_LE(EOS(STATIC_1310), x0, x1, x2, x1, x2) → 1310_0_main_LE(EOS(STATIC_1310), +(x0, -1), x1, x2, x1, x2) | &&(>=(x2, x1), <(x2, +(x0, -1)))
1310_0_main_LE(EOS(STATIC_1310), x0, x1, x2, x1, x2) → 1310_0_main_LE(EOS(STATIC_1310), x0, +(x1, -1), x2, +(x1, -1), x2) | <(x2, x1)
R rules:
Filtered ground terms:
1310_0_main_LE(x1, x2, x3, x4, x5, x6) → 1310_0_main_LE(x2, x3, x4, x5, x6)
EOS(x1) → EOS
Cond_1310_0_main_LE1(x1, x2, x3, x4, x5, x6, x7) → Cond_1310_0_main_LE1(x1, x3, x4, x5, x6, x7)
Cond_1310_0_main_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_1310_0_main_LE(x1, x3, x4, x5, x6, x7)
Filtered duplicate args:
1310_0_main_LE(x1, x2, x3, x4, x5) → 1310_0_main_LE(x1, x4, x5)
Cond_1310_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_1310_0_main_LE(x1, x2, x5, x6)
Cond_1310_0_main_LE1(x1, x2, x3, x4, x5, x6) → Cond_1310_0_main_LE1(x1, x2, x5, x6)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
1310_0_main_LE(x0, x1, x2) → 1310_0_main_LE(+(x0, -1), x1, x2) | &&(>=(x2, x1), <(x2, +(x0, -1)))
1310_0_main_LE(x0, x1, x2) → 1310_0_main_LE(x0, +(x1, -1), x2) | <(x2, x1)
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
1310_0_MAIN_LE(x0, x1, x2) → COND_1310_0_MAIN_LE(&&(>=(x2, x1), <(x2, +(x0, -1))), x0, x1, x2)
COND_1310_0_MAIN_LE(TRUE, x0, x1, x2) → 1310_0_MAIN_LE(+(x0, -1), x1, x2)
1310_0_MAIN_LE(x0, x1, x2) → COND_1310_0_MAIN_LE1(<(x2, x1), x0, x1, x2)
COND_1310_0_MAIN_LE1(TRUE, x0, x1, x2) → 1310_0_MAIN_LE(x0, +(x1, -1), x2)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x2[0] >= x1[0] && x2[0] < x0[0] + -1 ∧x0[0] →* x0[1]∧x1[0] →* x1[1]∧x2[0] →* x2[1])
(1) -> (0), if (x0[1] + -1 →* x0[0]∧x1[1] →* x1[0]∧x2[1] →* x2[0])
(1) -> (2), if (x0[1] + -1 →* x0[2]∧x1[1] →* x1[2]∧x2[1] →* x2[2])
(2) -> (3), if (x2[2] < x1[2] ∧x0[2] →* x0[3]∧x1[2] →* x1[3]∧x2[2] →* x2[3])
(3) -> (0), if (x0[3] →* x0[0]∧x1[3] + -1 →* x1[0]∧x2[3] →* x2[0])
(3) -> (2), if (x0[3] →* x0[2]∧x1[3] + -1 →* x1[2]∧x2[3] →* x2[2])
(1) (&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x2[0]=x2[1] ⇒ 1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥NonInfC∧1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])∧(UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥))
(2) (>=(x2[0], x1[0])=TRUE∧<(x2[0], +(x0[0], -1))=TRUE ⇒ 1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥NonInfC∧1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])∧(UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥))
(3) (x2[0] + [-1]x1[0] ≥ 0∧x0[0] + [-2] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]x2[0] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (x2[0] + [-1]x1[0] ≥ 0∧x0[0] + [-2] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]x2[0] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (x2[0] + [-1]x1[0] ≥ 0∧x0[0] + [-2] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]x2[0] + [bni_12]x1[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (x2[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]x2[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]x2[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(8) (x2[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]x2[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(9) (x2[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]x2[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(10) (COND_1310_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥NonInfC∧COND_1310_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])∧(UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥))
(11) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)
(12) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)
(13) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)
(14) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_14] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(15) (<(x2[2], x1[2])=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x2[2]=x2[3] ⇒ 1310_0_MAIN_LE(x0[2], x1[2], x2[2])≥NonInfC∧1310_0_MAIN_LE(x0[2], x1[2], x2[2])≥COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])∧(UIncreasing(COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])), ≥))
(16) (<(x2[2], x1[2])=TRUE ⇒ 1310_0_MAIN_LE(x0[2], x1[2], x2[2])≥NonInfC∧1310_0_MAIN_LE(x0[2], x1[2], x2[2])≥COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])∧(UIncreasing(COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])), ≥))
(17) (x1[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x2[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(18) (x1[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x2[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(19) (x1[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x2[2] + [bni_16]x1[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(20) (x1[2] + [-1] + [-1]x2[2] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])), ≥)∧0 = 0∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x2[2] + [bni_16]x1[2] ≥ 0∧0 = 0∧[(-1)bso_17] ≥ 0)
(21) (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])), ≥)∧0 = 0∧[(-1)Bound*bni_16] + [bni_16]x1[2] ≥ 0∧0 = 0∧[(-1)bso_17] ≥ 0)
(22) (x1[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])), ≥)∧0 = 0∧[(-1)Bound*bni_16] + [bni_16]x1[2] ≥ 0∧0 = 0∧[(-1)bso_17] ≥ 0)
(23) (x1[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])), ≥)∧0 = 0∧[(-1)Bound*bni_16] + [bni_16]x1[2] ≥ 0∧0 = 0∧[(-1)bso_17] ≥ 0)
(24) (COND_1310_0_MAIN_LE1(TRUE, x0[3], x1[3], x2[3])≥NonInfC∧COND_1310_0_MAIN_LE1(TRUE, x0[3], x1[3], x2[3])≥1310_0_MAIN_LE(x0[3], +(x1[3], -1), x2[3])∧(UIncreasing(1310_0_MAIN_LE(x0[3], +(x1[3], -1), x2[3])), ≥))
(25) ((UIncreasing(1310_0_MAIN_LE(x0[3], +(x1[3], -1), x2[3])), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(26) ((UIncreasing(1310_0_MAIN_LE(x0[3], +(x1[3], -1), x2[3])), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(27) ((UIncreasing(1310_0_MAIN_LE(x0[3], +(x1[3], -1), x2[3])), ≥)∧[bni_18] = 0∧[1 + (-1)bso_19] ≥ 0)
(28) ((UIncreasing(1310_0_MAIN_LE(x0[3], +(x1[3], -1), x2[3])), ≥)∧[bni_18] = 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1310_0_MAIN_LE(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(COND_1310_0_MAIN_LE(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_1310_0_MAIN_LE1(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3
COND_1310_0_MAIN_LE1(TRUE, x0[3], x1[3], x2[3]) → 1310_0_MAIN_LE(x0[3], +(x1[3], -1), x2[3])
1310_0_MAIN_LE(x0[2], x1[2], x2[2]) → COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])
1310_0_MAIN_LE(x0[0], x1[0], x2[0]) → COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])
COND_1310_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1]) → 1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])
1310_0_MAIN_LE(x0[2], x1[2], x2[2]) → COND_1310_0_MAIN_LE1(<(x2[2], x1[2]), x0[2], x1[2], x2[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if (x0[1] + -1 →* x0[0]∧x1[1] →* x1[0]∧x2[1] →* x2[0])
(0) -> (1), if (x2[0] >= x1[0] && x2[0] < x0[0] + -1 ∧x0[0] →* x0[1]∧x1[0] →* x1[1]∧x2[0] →* x2[1])
(1) -> (2), if (x0[1] + -1 →* x0[2]∧x1[1] →* x1[2]∧x2[1] →* x2[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if (x0[1] + -1 →* x0[0]∧x1[1] →* x1[0]∧x2[1] →* x2[0])
(0) -> (1), if (x2[0] >= x1[0] && x2[0] < x0[0] + -1 ∧x0[0] →* x0[1]∧x1[0] →* x1[1]∧x2[0] →* x2[1])
(1) (COND_1310_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥NonInfC∧COND_1310_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])∧(UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥))
(2) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_11] = 0∧[(-1)bso_12] ≥ 0)
(3) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_11] = 0∧[(-1)bso_12] ≥ 0)
(4) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_11] = 0∧[(-1)bso_12] ≥ 0)
(5) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_11] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(6) (&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x2[0]=x2[1] ⇒ 1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥NonInfC∧1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])∧(UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥))
(7) (>=(x2[0], x1[0])=TRUE∧<(x2[0], +(x0[0], -1))=TRUE ⇒ 1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥NonInfC∧1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])∧(UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥))
(8) (x2[0] + [-1]x1[0] ≥ 0∧x0[0] + [-2] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [(2)bni_13]x0[0] + [(-1)bni_13]x2[0] + [(-1)bni_13]x1[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(9) (x2[0] + [-1]x1[0] ≥ 0∧x0[0] + [-2] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [(2)bni_13]x0[0] + [(-1)bni_13]x2[0] + [(-1)bni_13]x1[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(10) (x2[0] + [-1]x1[0] ≥ 0∧x0[0] + [-2] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [(2)bni_13]x0[0] + [(-1)bni_13]x2[0] + [(-1)bni_13]x1[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(11) (x2[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [(2)bni_13]x0[0] + [(-2)bni_13]x1[0] + [(-1)bni_13]x2[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(12) (x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(5)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[0] + [(2)bni_13]x1[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(13) (x2[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(5)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[0] + [(2)bni_13]x1[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
(14) (x2[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(5)bni_13 + (-1)Bound*bni_13] + [bni_13]x2[0] + [(2)bni_13]x1[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1310_0_MAIN_LE(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + [2]x2
POL(1310_0_MAIN_LE(x1, x2, x3)) = [1] + [2]x1 + [-1]x3 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
1310_0_MAIN_LE(x0[0], x1[0], x2[0]) → COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])
1310_0_MAIN_LE(x0[0], x1[0], x2[0]) → COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])
COND_1310_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1]) → 1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if (x0[1] + -1 →* x0[0]∧x1[1] →* x1[0]∧x2[1] →* x2[0])
(3) -> (0), if (x0[3] →* x0[0]∧x1[3] + -1 →* x1[0]∧x2[3] →* x2[0])
(0) -> (1), if (x2[0] >= x1[0] && x2[0] < x0[0] + -1 ∧x0[0] →* x0[1]∧x1[0] →* x1[1]∧x2[0] →* x2[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if (x0[1] + -1 →* x0[0]∧x1[1] →* x1[0]∧x2[1] →* x2[0])
(0) -> (1), if (x2[0] >= x1[0] && x2[0] < x0[0] + -1 ∧x0[0] →* x0[1]∧x1[0] →* x1[1]∧x2[0] →* x2[1])
(1) (COND_1310_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥NonInfC∧COND_1310_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])∧(UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥))
(2) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_8] = 0∧[1 + (-1)bso_9] ≥ 0)
(3) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_8] = 0∧[1 + (-1)bso_9] ≥ 0)
(4) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_8] = 0∧[1 + (-1)bso_9] ≥ 0)
(5) ((UIncreasing(1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])), ≥)∧[bni_8] = 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_9] ≥ 0)
(6) (&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x2[0]=x2[1] ⇒ 1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥NonInfC∧1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])∧(UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥))
(7) (>=(x2[0], x1[0])=TRUE∧<(x2[0], +(x0[0], -1))=TRUE ⇒ 1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥NonInfC∧1310_0_MAIN_LE(x0[0], x1[0], x2[0])≥COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])∧(UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥))
(8) (x2[0] + [-1]x1[0] ≥ 0∧x0[0] + [-2] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(9) (x2[0] + [-1]x1[0] ≥ 0∧x0[0] + [-2] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(10) (x2[0] + [-1]x1[0] ≥ 0∧x0[0] + [-2] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(11) (x2[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(12) (x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [bni_10]x2[0] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(13) (x2[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [bni_10]x2[0] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(14) (x2[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [bni_10]x2[0] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1310_0_MAIN_LE(x1, x2, x3, x4)) = [-1]x3 + x2
POL(1310_0_MAIN_LE(x1, x2, x3)) = x1 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [1]
POL(<(x1, x2)) = [-1]
COND_1310_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1]) → 1310_0_MAIN_LE(+(x0[1], -1), x1[1], x2[1])
1310_0_MAIN_LE(x0[0], x1[0], x2[0]) → COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])
1310_0_MAIN_LE(x0[0], x1[0], x2[0]) → COND_1310_0_MAIN_LE(&&(>=(x2[0], x1[0]), <(x2[0], +(x0[0], -1))), x0[0], x1[0], x2[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer